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Compressible rapid distortion theory is used to examine pressure fluctuations and the 
pressure-dilatation correlation in a field of turbulence subjected to rapid homo- 
geneous compression. It is shown how a one-dimensional compression produces large 
solenoidal pressure fluctuations. As the dimensionality of the compression increases, 
the magnitude of these fluctuations decreases - it  vanishes for a spherically 
symmetric compression. By contrast the dilatational, or acoustic, pressure 
fluctuations depend mainly on the net volumetric compression, and are relatively 
insensitive to  the dimensionality of the compression. These same comments apply to 
the pressure-dilatation correlation. 

The pressure-dilatation correlation appears in the compressible turbulent kinetic 
energy equation and is significant in rapidly evolving flows ; Reynolds stress closure 
models require that it be represented. The continuity equation provides a relation 
between pressure dilatation and the rate of change of pressure fluctuation variance. 
This relation is the basis for our RDT analysis. That analysis leads to a proposal for 
modelling the rapid contribution to pressure dilatation. 

1. Introduction 
Rapid distortion theory (RDT) provides a means for examining processes which 

occur in turbulent flows when the timescale of the rate of distortion of turbulence is 
much shorter than the characteristic timescale of the large eddies. In  the present 
paper we solve the irrotational, compressible RDT equations to  determine the 
pressure variance and the pressure-dilatation correlation in homogeneously 
compressed turbulence at small fluctuating Mach numbers. Zeman (1991) observed 
that in direct numerical simulations (Coleman & Mansour 1991) of rapid one- 
dimensional compression of nearly incompressible, homogeneous turbulence, the 
pressure-dilatation term in the turbulent kinetic energy acts as a significant sink of 
energy; i t  can be an order of magnitude larger than the dissipation term, and 
therefore must be represented in turbulence models which deal with flows containing 
one- or two-dimensional compressions. Such flows include turbulence/shock wave 
interactions, the compression corner and the compression stroke of an internal 
combustion engine (Wong & Hoult 1979). These are cases in which turbulence may 
indeed be subjected to rapid distortion. 

It is evident from direct numerical simulations (DNS) of turbulence passing 
through a shock (Lee, Lele & Moin 1991), that the pressuredilatation correlation 
plays an important role in the turbulence energy balance in the vicinity of the shock. 
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The pressure dilatation converts kinetic energy to ' potential ' energy during 
compression and then partially restores it after the compression. 

Coleman & Mansour (1991) found by DNS that the Spiegel-Frisch transformation 
between low-Mach-number spherically compressed turbulence and decaying isotropic 
turbulence provides a basis for understanding spherically compressed turbulence. 
But, the existence of this transformation into isotropic decay also suggests that 
spherical compression will not reveal the essential effects of compression upon 
turbulent flow. In  the applications cited above, the compression is not spherically 
symmetric. DNS of unsymmetric compressions show some striking effects of 
asymmetry (Zeman 1991). Of present interest is the observation that the ratio of 
pressure-dilatation correlation to dissipation rate is enormously greater for a one- 
dimensional compression than for a spherical compression. The present analysis 
provides a simple explanation for that difference : the rapid, solenoidal pressure 
vanishes for spherical compression, but becomes quite large for a one-dimensional 
compression. The larger pressure dilatation causes a pronounced reduction in 
turbulent kinetic energy. Another noteworthy result of the DNS is that, at  the low 
turbulence Mach numbers of present interest, the pressure variance grows far more 
rapidly in one-dimensional than in spherical compression ; again, the present linear 
analysis is consistent with this result. 

A Reynolds stress analysis for the case to be addressed in this paper, essentially, 
was given by Batchelor & Proudman (1954) and Ribner & Tucker (1953) : Batchelor 
& Proudman considered incompressible flow, while Ribner & Tucker examined the 
distortion of solenoidal turbulence by a compressible mean flow. The Reynolds stress 
analysis will not be repeated here, nor will the formal justifications of the rapid 
distortion approximation, which have been explained a t  length in reviews such as 
that by Hunt & Carruthers (1990). It suffices to say that RDT uses linearized, 
inviscid equations, combined with statistical averaging, to describe the evolution of 
a field of turbulence in response to strong distortions by the mean flow. A previous 
application of RDT to pressure fluctuations, although for incompressible flow, is 
described in Durbin & Hunt (1980). 

Batchelor & Proudman (1954) and Ribner & Tucker (1953) provided solutions for 
homogeneously distorted turbulence. Their solutions for strictly homogeneous 
turbulence also provide a quasi-homogeneous (or small-scale) approximation to non- 
homogeneously distorted turbulence, provided that entropy fluctuations can be 
neglected. The non-homogeneous compressible RDT of Goldstein (1978) allows for 
vorticity generation by entropy fluctuations, but this effect cannot occur in the 
strictly homogeneous case ; Goldstein (1979) examined the production of turbulence 
from entropy fluctuations. In the incompressible RDT, a transformation can be 
introduced to relate the strictly homogeneous solutions to the quasi-homogeneous 
approximation, without symmetry restrictions (Durbin 1981). In  the present 
compressible theory, quasi-homogeneity also requires a high-frequency approxi- 
mation for the acoustic mode. The analysis in the following text is for the strictly 
homogeneous distortion ; the quasi-homogeneous case is considered in Appendix A. 

Because of the approximations and idealizations made, the RDT solution is of 
limited predictive value - of course, i t  does describe quite well situations where the 
approximations are satisfied. Some level of Reynolds stress closure is normally used 
for practical computations of turbulent flow. Rapid distortion analysis gives 
guidance to the development of such models : in the present paper we propose a rapid 
pressure dilatation model. The model provides excellent agreement with DNS data. 
Zeman (1991) previously proposed an algebraic model to account for the large rapid 
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contribution to pressure dilatation in one-dimensional, and its absence in three- 
dimensional, spherical compression. That model yields correct magnitudes of 
pressure dilatation, but the pointwise agreement with data is less satisfactory than 
the present model, in part because Zeman’s is an algebraic model. 

2. Mean flow 
The requirement for homogeneity in compressible flow is more stringent than in 

incompressible flow. In the former case both the mean flow gradients and mean 
pressure must be spatially uniform; in the latter the mean pressure need not be 
uniform. The requirement of uniform velocity gradient means that U has the form 
U = x-S(t); the requirement of uniform pressure, substituted into the inviscid 
momentum equation, shows that the velocity satisfies DU/Dt = 0, and hence that S 
must satisfy 

The dot denotes differentiation with respect to time. In the present case of 
irrotational mean flow, the solution to (1) is 

s+s.s = 0. (1) 

(2) 1 s = (  0 a,/(l+a,t) 0 

J = (  0 I/( 1 + a2 t) 0 

a,/(l+a,t) 0 0 

0 0 a3/(1 +a,t) 
in which the at are constants. Although this is the only time-dependence consistent 
with homogeneity, it actually represents a fairly general distorting strain because the 
a, are arbitrary. S is the rate of strain matrix. To facilitate the RDT solution we 
introduce the matrix 

(3) 
1/(1+a,t) 0 0 

0 0 1 / (1+  a3 t)  
Note that S = S(0) - J and that J satisfies 

J+S.J=O. (4) 
If the mean vorticity were not zero J would contain off-diagonal terms, and would 
not be symmetric. That asymmetry greatly complicates the RDT theory for mean 
shear flows. J is the transformation from Lagrangian to Eulerian coordinates that 
arises in classical RDT analysis (Batchelor & Proudman 1954). 

The mean density, as determined by continuity, and the adiabatic sound speed are 
given by 

p = po Det (J) ; 
where, as usual y is the ratio of specific heats. In the present case of rapid, 
homogeneous compression, dissipative heating is not important. Pressure and 
density are related by the isentropic formula P/pY = constant. 

c2 = ci[Det (J)]Y-’ 

3. Fluctuations 

linearized, inviscid fluctuating momentum, continuity and entropy equations are 
Given that p is spatially uniform, and that DU/Dt = 0 and Dp/Dt = -pV. U, the 

(5) 

p(Du’/Dt+u’.VU) = -Vp’, 
D(p’/p)/Dt = -V.U‘, 

Ds’/Dt = 0. 
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There are the equations used in RDT. In ( 5 )  s' is the fluctuating entropy; D/Dt is the 
convective derivative following the mean flow, a, + U -  W ; primes denote fluctuating 
variables ; and unprimed variables represent mean values. The conservation of 
entropy implies that yD(p'/p)/Dt = D(p'/P)/Dt, so the continuity equation can be 
replaced by 

For future reference, we note that (6) enables the pressure-dilatation correlation to 
be computed from the pressure variance : 

D(p'/yP)/Dt = -V.U' .  (6) 

(7)  

The overbar denotes ensemble averaging. Our primary results, and our new 
developments on closure modelling, derive from (7). The momentum equation and (6) 
form a closed system for u' and p'. The requirement of homogeneity of the mean 
pressure prevents entropy fluctuations from generating turbulent velocity fluctu- 
ations. Turbulent velocity generation by entropy fluctuations is a phenomenon 
which non-homogeneous RDT is able to describe (Goldstein 1978, 1979). 

To obtain a solution to the governing linearized equations, we introduce a Fourier 
representation of the initial field. Then the RDT analysis can be performed by 
solving for each wavenumber component separately (Hunt 1973 ; Hunt & Carruthers 
1990). Thus, let 

m m 

u' = I-, li d3k0, p' = I-mj? d3k0. (8) 

A solution is sought in the form 

6 = A(t)eWt)'x. j? = B(t)eik(t)'x (9) 

in which k = ko-J(t) .  Equation (4) and this formula for k indicate that D(k-x)/  
Dt = 0. With (9), the governing equations ( 5 )  and (6) become 

p ( k + A - S )  = -ikB, (104  

Let A = d + i k $ ,  (11) 

where d(t) = do.J(t), with do being a constant vector determined by the initial 
conditions. This decomposition of A is convenient because d is a solution to (10a) 
with the right-hand side equated to zero. Hence, substituting (11)  into (10a) gives 

B = -pd (12) 

and substituting this along with (11) into (lob) shows that $ satisfies 

Thus, the analysis reduces to solving the second-order ordinary differential equation 
(13) for $ - this formulation of compressible RDT was first presented by Goldstein 
(1978). 

For a spherical compression J = //(l +at), where /is the identity matrix. Then (13) 
has the particular solution $ = ik.d/lk12. If this is inserted into ( l l ) ,  one finds that 
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the velocity is solenoidal (i.e. k - A  = 0). In  addition to this particular solution, (13) 
will have a homogeneous solution, which is a dilatational, irrotational acoustic wave, 
uncoupled from the vortical, solenoidal component of the velocity (Sabelnikov 
1975) : the acoustic wave amplitude is determined entirely from the initial conditions ; 
if the initial velocity is solenoidal then no acoustic component will exist and the 
turbulence will remain solenoidal for all time. 

For general, non-spherical compressions, the vortical and acoustic modes will be 
coupled through the forcing term on the right-hand side of (13). If the time 
derivatives were absent from (13) its solution would be g5 = ik.d/)k12. Equation (13) 
can alternatively be formulated as an equation for the departure from this quasi- 
steady solution. Letting 

k * d  
g5 = i-+g51 

lkI2 

The quantity being differentiated on the right-hand side of (15) evolves in time owing 
to distortion by the mean flow. This distortion occurs on the timescale l/lul, where 
a represents one of the non-zero constants in (2). An acoustic wave generated by the 
temporal evolution of spatially homogeneous, vortical turbulence would have a 
wavelength equal to that of the distorted eddy. Hence, the acoustic frequency is of 
order c/L, where L is the integral scale of the turbulence. When the distortion 
timescale is long compared to the acoustic timescale, acoustic waves will not be 
generated efficiently. The forcing term in (15) will generate acoustic disturbances of 
amplitude O(Am)2, where Am = LJul/c. Am is the change in mean flow Mach number 
across one integral scale of the turbulence (i.e. across one ‘eddy’). In  the quasi- 
homogeneous approximation - in which the eddy size must be small compared to the 
scale of mean flow variation - Am2 must be small (unless the mean flow Mach number 
is large compared to unity). Thus, the present analysis corresponds to the quasi- 
homogeneous limit only when the right-hand side of (15) is small; that  is when the 
acoustic and vortical modes decouple to lowest order of approximation. We will 
invoke the small-Am limit. It should be emphasized that even in this limit the 
pressure-dilatation correlation caused by vortical disturbances is not zero ; it  can be 
computed by the relation (7) - although strictly, this must be regarded as a higher- 
order effect of the lowest-order solenoidal field. 

In the ensuing analysis, the velocity will be given by 

A = [d-k(k.d/lk12)]+ikg51, (16) 

as follows from (1 1)  and (14). The bracketed term in (16) is orthogonal to k, and hence 
can be referred to as the solenoidal component of A. Note that (16) is the Helmholtz 
decomposition of the velocity into solenoidal (the first two terms) and irrotational 
parts, while (11)  is Goldstein’s decomposition into vortical (but not solenoidal) and 
irrotational parts. It is clear from (16) that the two components of the Helmholtz 
decomposition of the velocity field are orthogonal when the turbulence is 
homogeneous. Other properties of the flow, such as the pressure fluctuations, are not 
decoupled by the Helmholtz decomposition. However, the present results will be 
obtained under the approximation that g51 is uncorrelated with the solenoidal part of 
(16). 
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4. Vortical mode 

pressure is given by 
According to the preceding (see (12) and (14)), the vortical contribution to the 

=-ip-( d k o . J 2 . d o  ) 
dt ko.J2 .ko  

where 9' = J-SeJ ,  e = k,/(k,( and ( 4 )  was used. do is simply the initial solenoidal 
velocity vector in Fourier space. 

The wavenumber spectrum of the initial velocity is defined as 

Sodko) = 

For initially isotropic turbulence 

where bt is the initial turbulent kinetic energy. It follows from this, (9) and (17) that 
the instantaneous pressure spectrum is 

The bracketed term in (19) is orthogonal to e, so the three-term product is equal to 
the product of the bracketed term with itself. 

The pressure variance is the integral over wavenumber of its spectrum: 

- m -  
p" = /-a [$I2 dsk,. 

Li = J: E(k , ) /k ;  dk, Defining 

and evaluating the integral in spherical coordinates give 

where the range of integration is the unit sphere : that is, e = (coa 8, sin 8 sin $, sin 8 
cos 4 )  and dZ = sin 8 d8 d$ with 0 < 8 < n and 0 < 4 < 25c. 

In general this integral must be evaluated numerically. Its behaviour as t + O  is 
determined by substituting J+I to find 

- 
P ' 2 + - f s ( Q o ~ , P ) 2  r3Tr(S2)-(Tr(S))21, (22) 
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where Tr ( - )  means the trace of the matrix argument. Similarly, the limiting 
behaviour of p'2 can be found by differentiating (21) and using J+-S and 9 
+ - 3 s 2 :  

p'2+ - 2Tr (S)p'2+ 2(qozp)2 [50 Tr (S) Tr (S2) - 8(Tr (S)),- 78 Tr (S3)]. (23) 

Equation ( 7 )  can be rewritten 

1 I. 
p'V.u'= -- (hf2 + y Tr (S) p) (24) 

P C 2  

because PIP = yp/p = -yV. U. Substituting (22) and (23) into (24) gives 

2 L2 
35c 

p'V.u'+- 2qo i p  [ ( 7 y - 3 )  (Tr (S))3- (4+21y) Tr (S) Tr (!is)+39 Tr (S3)] (25) 

as t 0. This is only the short-time behaviour of the pressure-dilatation correlation ; 
at later times, a general evaluation of the integral (21) is not so easily obtained. 

However, it can be evaluated in a simple closed form fca the case of one- or 
two-dimensional axisymmetric compressions. For the one-dinnensional compression 
J, = J3 = 1 and S, = S, = 0. Then 

(2-1)  tan-ld 3z2+2z+3  
162; +48x2(l + x ) ~ '  

F ( x )  = 

In this case p = Jlpo and .Y1 = a, JY (see the equations following (4) and (17))  so 

p'2 = 6(q0L0p0u , )2J~F(a) .  

The term in parentheses is a dimensional constant; the other terms determine the 
dependence of p on compression ratio, J,. For a two-dimmsional axisymmetric 
compression J ,  = 1, J3 = J ,  and S,  = 0. In this case 

- 
P f 2  = 6(qoLoPoa2)2J;~(P),  (28) 

where /3 = J i 2 -  1. Note that the vortical pressure fluctuittion is produced by 
straining, and vanishes when u2 = 0. The corresponding pressure dilatation can be 
evaluated by substituting (28) into ( 7 ) ;  it is easier to do this by numerical evaluation 
of the derivative with respect to time than to differentiate (26)  and (28)  analytically. 

Figure 1 shows the turbulent intensities, normalized by their initial value, for one- 
and two-dimensional compression. They were evaluated from the formulae 
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FIGURE 1. Turbulent intensities versus linear comEression ratio : on? and two-dimensional 
axisymmetric compressions. ---, u: (1-D); ---, ug (1-D); -.-., u: (2-D); -, u: (2-D). 
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FIQURE 2. Pressure p 2 / p i  variances for vortical component : -, one-dimensional ; 
_ _ _  , two-dimensional. 

_ _  
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FIGURE 3. Pressuredilatation correlation for 3 vortical component : -, one-dimensional ; 
_ _ _  , two-dimensional. 

where 
1 x-1 

G(z) .=  -+-tan-'xi, 
x d 

taken - from Ribner & Tucker (1953). Because the turbulence is axisymmetric, = 
u;'. The abscissa of figure 1 is J1 or J, ; heqce, this axis is the volumetric compression 
ratio in one dimension and the square root of the compression ratio in two 
dimensions. Values of the abscissa of less than unity correspond to volumetric 
expansion, and values greater than unity to compression. 

Figures 2 and 3 show the present results for p'2 and p'W su'; for the latter y = 1.4 
was used. The former is normalized by its initial value, = &: Lipia2;  the latter is 
normalized by - z a / p ,  ci. a represents either a, or a2, as defined by (2). Note that 
a < 0 for a compression, so the constant by which p'W -u' is normalized is positive in 
this case. The apparent discontinuity a t  J = 1 in figure 3 simply is a consequence of 
the normalization constant varying &s a3 as a + 0. 

Comparing figures 1 and 2, one sees that compression has a rather greater effect on 
pressure fluctuations than on velocity fluctuations ; indeed, the magnitude of the 
effect of compression on pressure fluctuations is disconcertingly large. Numerical 
simulations of compressed turbulence (Coleman & Mansour 1991) show a similarly 
large effect. This disproportionate effect on pressure fluctuations explains the 
importance of pressure fluctuations and pressure-dilatation correlations in turbulent 
flow through shock waves and in other flows with rapid compression. Although the 
effect of compression seems greater in two dimensions, it should be appreciated that 
when J = 3 the volumetric compression is 9-fold in two dimensions, but only 3-fold 
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00 

FIQURE 4. Pressure variance 2 (-) and pressure dilatation @ (---) associated with the 
vortical mode for compression with J, = 2, J3 = 1 as a function of Je. 

in one dimension ; for a given volumetric compression ratio the one-dimensional 
compression gives rise to a greater pressure fluctuation. Figure 3 shows that the 
pressure-dilatation correlation is significantly larger for the one-dimensional 
compression. Recall that for a three-dimensional, spherically symmetric compression 
the vortical contribution to p'2 and p'V-u' is identically zero. Hence, the pressure 
dilatation decreases with increasing dimensionality of the compression. 

For asymmetric compressions (21) can be evaluated numerically. Figure 4 shows 
such an evaluation for a compression with J1 = 2, J3 = 1 and J, varying along the 
abscissa. When J, = 1 the one-dimensional axisymmetric result is recovered, and 
when J, = 2 the two-dimensional cylindrically symmetric result is obtained. In  figure 
5 the compression is axisymmetric, with J1 = 2 and J3 = J, varying along the 
abscissa. This curve interpolates between a one-dimensional compression and a 
spherically symmetric compression. Recall that the latter has pr2 = 0. In  broad 
terms, increasing the symmetry of the distortion decreases the pressure-dilatation 
correlation. The pressure variance does not show a correspondingly simple, 
monotonic variation : in figure 4 is increases with increasing symmetry, while in 
figure 5 it  first increases, then decreases to its value of zero for spherical compression. 

A quasi-homogeneous calculation, making use of the above strictly homogeneous 
analysis is presented in Appendix A. That Appendix describes distortion of 
turbulence by flow through a nozzle. The strain and compression are more complex 
than for homogeneous compressions : the turbulence is expanded along the axis of the 
nozzle and compressed in the perpendicular direction. The mean rate of strain 
increases from zero as the contracting section is entered, then decreases to zero as it 
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Jz = J3 

FIQURE 5. Pressure variance 2 (-) and pressure dilatation 3 (----) of vortical mode for 
axisymmetric compression with J1 = 2 versus Ja .  

is exited. Figure 12 shows how the pressure variance rises and falls through the 
nozzle, along with the corresponding behaviour of pressure dilatation. This is 
analogous to what Lee et al. (1991) observed in flow through a shock wave, although 
the nozzle presents a rather milder version. 

5. Acoustic mode 
The results presented so far are for the vortical component of the random velocity 

field. In general, compressed acoustic waves will also be present. In the current limit 
of small Am the acoustic frequency is high - of O(l/Am) on the timescale of the 
compression. To lowest order of approximation #1 is given by the solution to 

(see the discussion below (15)). The acoustic field is generated entirely by its initial 
condition because (30) is a homogeneous equation. Also, it is consistent with the 
high-frequency limit to solve (30) by a WKB approximation (Bender & Orszag 1978). 
Compression will increase c2 and decrease the wavelength of the acoustic disturbance ; 
we wish to determine how these affect the statistics of a field of random waves. 

The WKB solution to (30) is 

#1 = (i): (a sin 0 + b cos 0), 



360 P .  A .  Durbin and 0. Zeman 

0 1 2 
J ,  or J ,  

- 
FIGURE 6. Turbulent intensitiecof acoustic mod%-, 2 (1-D) ; ---, u: (2-D) ; 

, U: (1-D) ; -.-. , U ;  (2-D). 

0 = Iklcdt, u = &(O)/(lkl~:)~; b = q51(0)/(~k~/~o)~.  where 

It is assumed that the initial conditions of the acoustic field are uncorrelated with 
those of the solenoidal, vortical field. Then the acoustic components of the velocity 
correlation tensor are 

l 

+ (p -2 )  cos 2 0  + 2absin 201 d3k,. 

By the reasoning given previously, the frequency of the oscillatory terms is high 
when t > 0 (i.e. 0 = J w d t  - O(l/Am) when t is of order the distortion timescale). It 
follows that their contribution to the integral is O(Am4) smaller than the non- 
oscillatory terms. Hence, to  leading order, 

If we define 39.: = 2m, 1; (2 + a) 12: dk, 

then d Z ;  
(em J)  ( e . J )  

(33) 

(34) 

$qi is the initial kinetic energy of the acoustic field. The integrals over the unit sphere 



Rapid distortion theory for compressed turbulence 361 

can again be evaluated for one- and two-dimensional axisymmetric compressions. 
After substituting either c = J$Y-1) /2  or c = Jg-l for one- or two-dimensional 
compressions, the results 

where H ( z )  = [(z + z2)i - sinh-' zi]/d 

are obtained. These are the intensities of compressed acoustic-waves. The 
corresponding pressure variance is obtained from (31)  and 1312 = p2d2. Again, we 
invoke the present high-frequency limit and drop the higher-order contribution from 
oscillatory components of the integrand : 

- 
2 2  3 As t+O, 

and 

PL2 + 3P qa c /co 
- 
pi2 + -+(9y + 5 )  z Tr (S). (37)  

The relation (37) ,  between z and z, is valid for all t for a spherically symmetric 
compression (Sabelnikov 1975 ; Zeman 1991). Note, in particular, that  the acoustic 
pressure variance is not zero -- for spherical compression. Indeed, because Tr (S) = 
V. U,  (37)  is the same as pi2/pL: + ( P / P , ) ( ~ Y + ~ ) / ~  as t + 0. 

Again, (36)  can be evaluated in closed form for one- and two-dimensional 
compressions : 

(3y+1)/2 

Z = 3 ( ~ ,  ~0 qa) "[sinh-' 2,i d+ (a2 +a)i] one-dimensional, (38a)  

J i Y + 2  

Z = 3(p, c, qa)2 - [sinh-'@+ (p' +/?);I 2/$ 
two-dimensional. (38b) 

Note that when the strain vanishes (a = /3 = 0) (38) reduces to the equipartition 
value = 3pi ct  q:. 

Figures 6 ,  7 and 8 are plots of the acoustic solution. Figure 6 shows that the 
variance of the velocity component in the direction of compression is increased by 
compression. Figures 7 and 8 show how the two-dimensional compression causes 
rather large increases in pressure variance and in pressuredilatation correlation. 
Recall that J, and J i  are the volumetric compression ratios. Hence, the levels of 
pressure variance and pressure dilatation in the two cases shown are similar for a 
given volumetric compression. By contrast, the vortical contribution to pressure- 
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1 2 3 
JI  or Jp  

_ _  
FIQURE I. Pressure variance of acoustic mode p'/p; : __ , one-dimensional ; 

. . . . ., two-dimensional. 

0 1 J~ or J* 2 3 

FIQURE 8. Pressurdilatation of the acoustic mode. 9: -, one-dimensional ; 
_ _ _ _  , two-dimensional. 
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dilatation (figure 3) was far grcatcr for the one-dimensional case. The short-time 
relation (37) suggests that the acoustic pressure variance should depend primarily on 
the mean density, and hence on the net volumetric compression. 

6. Turbulence modelling 
The short-time behaviour of rapid distortion solutions is sometimes used as 

guidance to turbulence closure modelling. It will be used here to model the 
pressuredilatation correlation. As noted in the introduction, this correlation can be 
a significant drain of turbulent kinetic energy in high-speed, non-equilibrium flows. 

When the initial condition is of isotropy, then RDT provides a means of perturbing 
the isotropic symmetry. A general approach to model formulation consists of 
expanding in powers of anisotropy (Launder, Reece & Rodi 1975). Thus, RDT 
provides concrete results which are consistent with a more abstract formalism. We 
will formulate our model by applying both the general formalism, and the concrete 
RDT analysis. 

The Favr6-averaged kinetic energy equation contains the term (Zeman 1991) 
h', = pV u'/p, which requires modelling. The present analysis suggests that  a model 
might make use of (7). In  general, nonlinear terms in the fluctuating continuity 
equation must be added; however, (7) is remarkably well satisfied in numerical 
simulations (Blaisdell, Mansour & Reynolds 1991), and l7, is important primarily 
when the turbulence evolves in consequence of rapid distortion by the mean flow, so 
such terms will be omitted here. To use (7) for Hd, formulae for the pressure variance 
are required. It will be assumed that - _  acoustic and solenoidal contributions to p'2 are 
statistically independent : p'2 = pi2 +pL2. In  numerical cimulations, these con- 
tributions are coupled by initial conditions, so the independence assumption can only 
be true after a transient. Also, when Am2 is not small the acoustic mode will be 
coupled to  the vorticity through the forcing term on the right-hand side of (15) : in 
this case there can be no separation into uncorrelated acoustic and solenoidal 
components. If L is estimated by the usual formulaL - k$/e  then Am = (talk/€) (ki /c) .  
The first factor is the ratio of turbulence to distortion timescales and must be large 
in the rapid distortion approximation. The second factor is the fluctuation Mach 
number and must be small if the present independence assumption is to have 
validity. When the fluctuation Mach number is not sufficiently small the RDT 
analysis requires solution of (15), or (13), without dropping the vortical forcing of 
acoustic disturbances. That presents a formidable problem, with which we have so 
far made no progress. 

The relation (37) was used by Zeman (1990) to model the evolution of acoustic 
pressure fluctuations. Although he gave the justification that the expression followed 
from Sabelnikov's ( 1975) rapid distortion analysis of spherical compression, we now 
see that this equation applies (as t + 0) to more general compressions. Zeman also 
allowed for relaxation to a non-zero equilibrium level of pressure fluctuations, so his 
model is 

where ra is an acoustic relaxation timescale and p: is the equilibrium pressure 
variance. 

The rapid contribution to the solenoidal pressure variance will be modelled by 
making use of (22) and (23). Because (23) is not the time derivative of (22), it  is 
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necessary to include the next term in the short-time expansion of (21). This can be 
done by the previously cited method of expanding about isotropy (Launder et al. 
1975). That method yields the general result 

- 
pi2 = (PqL)2 r~lTr(~:)+~,bi~~:~jl+O(ll~l12), (40) 

in which bii is the anisotropy tensor q / q 2  - cYij ; X,, = S,  -t Sij Tr (S) ; and C, and C, 
are constants (strictly, C, can depend linearly on b, through its invariants, and one 
might propose that C, and C, be made functions of Am). When equation (40) is 
regarded as a turbulence model, q and L represent instantaneous values, rather than 
the initial values appearing in (22). The RDT values for the constants are found by 
comparing (40) to  (23), after substituting the short-time behaviour b +-4/5S, t and 
d(qL)/dt+O(t). This yields C, = and C, = y. These are the constants which 
reproduce the short-time RDT solution ; but this solution is not necessarily 
representative of the later evolution of the pressure-dilatation correlation. It might 
be expected that somewhat different values would result from fitting the model (7),  
(39) and (40) to numerical or experimental data. Also, there is some uncertainty in 
how to determine a model value of L: turbulence models are usually based on the 
dissipation length q3/e; however in (40) L is a scale associated with pressure 
fluctuations (see (20)). Despite these caveats, in the calculation described below, the 
RDT values of C, and C, were found to give a very reasonable prediction of17,. 

For completeness i t  will be noted that when the mean rotation, 52, = +(a, Uj-ai Ui), 
is not zero, the procedure used to obtain (40) yields 

Z = (PqL), [Cl(~r(S:)+~Tr(51~))+bii(C,(S:~~+52~~)+C,(S*,,Q,j+~*i,a,i)>1. 

This contains a third constant. 
The present rapid pressure-dilatation formulation, (7),  (39) and (40), was 

incorporated into the second-order closure model of Zeman (1990, 1991). The model 
equations are contained in Appendix B. They have been simplified to the case of one- 
dimensional homogeneous compression. For the most part the model is of the type 
used for incompressible flow, with two notable exceptions. Firstly, (B 4) was used to 
rewrite the kinetic energy equation as a ' total fluctuation energy ' equation : the 
notation Y is used for this total energy. Secondly, a lengthscale equation is included; 
this equation was formulated by Zeman (1991) to account for the lengthscale 
reduction which occurs in a rapid compression. By design, in decaying turbulence L 
reduces to the dissipative scale (2k)a/e. 

Figure 9 shows a computation with the present model, along with numerical 
simulation data provided by Dr G. N. Coleman. The simulation is of initially 
isotropic turbulence subjected to homogeneous, one-dimensional compression. At the 
initial time in this simulation lalkle = 23.5 and k / c  = 0.017, so Am z 0.4; thus, the 
requirement that Am2 4 1 is met. Further information on the simulation can be 
found in Coleman & Mansour (1991), where it is listed as case cldb. The agreement 
between the present model and the data is quite satisfactory, although the steep rises 
of production, fld and kinetic energy, k, occur somewhat later in the model than in 
the data. Both the model and data show that after a non-dimensional time of 0.3, the 
pressure-dilatation term is consistently about 15 YO as large as the production term. 
Thus the pressure dilatation causes a significant drain of kinetic energy into pressure 
variance. 

As noted in the Appendix B, the constants of the rapid pressure-strain model are 
slightly smaller here than in Zeman (1990). These lower values were required to 
achieve a satisfactory level of anisotropy ( 2 / 2 k )  and, consequently, to give a 
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FIQURE 9. Comparison of model (lines) to DNS data (symbols). 

7 

satisfactory level of energy production (-Gal Ul) .  Even lower values of these 
constants would improve the agreement in figure 9. However, the purpose of this 
figure is simply to show that the present model for 17, gives reasonable results. In the 
model, l7, is not zero initially, while the initial conditions of the simulation make it 
zero. As we have noted, this would imply that the solenoidal and acoustic pressures 
cancel at  the outset, so the assumption that they are uncorrelated is not valid 
(G + 0) during a brief initial period. 

The model and data for dissipation rate, E ,  are not shown in figure 9 because they 
are very small in comparison to the other terms in the kinetic energy equation. This 
is so because the compression is rapid: initially V. Uk/e is equal to 23.5, so the 
production is an order of magnitude larger than dissipation. As the compression 
proceeds, - the ratio of production to dissipation increases considerably : at T = 0.8, 
-u;a, U J E  = 123.1 and -17,/~ = 18.5. 

Finally, we remark that in a previous effort to account for the effect of non- 
spherical compression, Zeman (1991) suggested a rapid contribution to of the form 

@-)$ k2 
ITd cc -- -Tr (Sg). 

PM$ 8 

Since p'2 varies as S:, (41) varies as S:, which agrees with the short-time RDT result 
(25). In this respect, the present analysis lends formula (41) some support. An 
alternative algebraic model might be arrived at by dropping the differentiated term 
from (B 4) ; however, that may be an unsatisfactory approximation in rapidly 
evolving flows. 
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7. Discussion 
Rapid distortion theory was investigated here for the insight that it gives into the 

behaviour of turbulence subjected to homogeneous compression. The analysis and 
closure modelling are restricted to low fluctuating Mach numbers because nonlinear 
compressible phenomena were neglected. More importantly, the linear analysis was 
done only in the limit Am2 -4 1. This enables the neglect of coupling between acoustic 
and vortical components at lowest order of approximation. The only higher-order 
effect considered here is the generation of a non-zero pressuredilatation correlation 
at next order of approximation. When Am is not small, distortion of vorticity can 
contribute significantly to the acoustic mode. It should be emphasized that the case 
of Am = 0(1)  is still within the purview of RDT, but the analysis would be rather 
difficult. 

Spherically symmetric distortions produce no (rapid) solenoidal pressure because 
J is then proportional to  the identity matrix, so the source term k - d  is proportional 
to  k,  do = 0 (recall that do is the initial solenoidal velocity) ; i.e. orthogonality of k 
and d is preserved by the spherical symmetry. For asymmetrical compression the 
distorted wave vector will not remain orthogonal t o  d :  this is how solenoidal 
pressure fluctuations arise in the present formulation. 

These considerations apply quite generally to  the source term in (13). Irrespective 
of the magnitude of Am, this term vanishes for spherically symmetric distortions 
and the acoustic component is uncoupled from the vorticity. The term ‘acoustic 
component ’ refers to the homogeneous solution of (15), or if k - d  = 0, to the solution 
of (13). Such solutions depend on the distortion only through the time-dependence 
of c and (kJ ; hence they are non-zero for spherical compression and are affected by 
such compression. 

The closure model for pressure dilatation, equations (7)  and (40), explicitly invokes 
the small-Am lowest-order decoupling of acoustic and solenoidal components. Again, 
the only higher-order effect considered is the generation of pressuredilatation 
correlation by the solenoidal component. The model was formulated by reference to 
the RDT analysis; essentially the short-time expansion of (21) to O(t )  was rescaled 
to  produce a model which was assumed valid for all t .  The expansion of 3 had to 
contain O(t)  terms to obtain the correct behaviour (25) for p’V-u’. The rescaling 
consisted of replacing initial values of q and L by instantaneous values and of 
eliminating S,t  in favour of b,. Of course this particular procedure has to result in 
a formula consistent with the general procedure of expanding about isotropy ; but 
because it is accomplished by expanding a solution to the governing equations, 
coefficients which are indeterminate in the general procedure are determined. It is 
remarkable that this approach leads to a model which is able to predict the 
turbulence statistics a t  large times, when the short time expansion is invalid. 

We are grateful to Dr G. N. Coleman for graciously providing us with his DNS 
data. 

Appendix A. The quasi-homogeneous approximation 
It was remarked in the introduction that the present solution is valid as a quasi- 

homogeneous approximation to non-homogeneously distorted turbulence. All that is 
required is to relate J and S to suitable distortion and rate-of-strain tensors for the 
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FIQTJRE 10. Turbulent flow through a nozzle. 

mean potential flow. A method for doing so is described in Hunt (1973) for two- 
dimensional distortions and in Durbin (1981) for axisymmetric distortions. Along a 
symmetry line, such as the centreline of the nozzle illustrated in figure 10, the 
following simple forms are obtained : 

" )  (-41) &( y pu 0 )  , .=( 0 -a , (pu) /p 0 

) (A21 

0 0  a2 u 0 

0 1  0 0 0 

for a two-dimensional nozzle, and 

0 0 
0 

a2 7.J 
.=(I! (P+ (pi);) > sI( 0 - ~ , ( P u ) / 2 P  

0 0 - % ( P u ) P P  

for an axisymmetric nozzle. One-dimensional isentropic gas dynamics will be used 
to determine U and p for a two-dimensional nozzle with cross-section given by 
A ( x ) / A ,  = (1 +0.3e2)/( 1 +eZ). The Mach number, m, is determined as a function 
of x by 

&/(I  +t(r- 1)  m2)(Y+l)/Z(Y--1) = m,A,/(1 +$(r- 1) ~ L ) ( Y + ~ ) / Z ( Y - - ~ ) ,  (A 3) 

which is the condition pUA = constant. Once m is found then 

c2/& = ( 1 + ~ ( y - 1 ) m " , / ( l + t ( y - 1 ) m 2 ) ,  U = mc, p/p,  = ( C ' / C ~ , ) ~ / ( Y - ~ )  

can be determined. 
I n  the quasi-homogeneous approximation, the acoustic component is identically 

zero if it vanishes upstream. In  this case only the vortical mode exists within the 
contraction (assuming no entropy fluctuations), so (21) describes the pressure 
fluctuation. For the calculations in figures 11 and 12, y = 1.4 and m, = 0.04 were 
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FIGURE 11. Prescribed area ratio A / A ,  (----) and Mach number distribution m/m, (--.--.), 
and resulting evolution of turbulent intensity q2 (--). 
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FIGURE 12. Evolution of pressure 3 (-) and pressurdilatation 9 (----) 
down the nozzle contraction. 
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used. Also U and p were normalized by their upstream values. The form of A(x)  shows 
how lengths are normalized by a scale of the contraction, say 1. Thus, in the 
normalization used in figures 2 and 3,  a is now replaced by U J l .  Figure 11 shows 
the prescribed cross-section and Mach number as a function of distance down 
the contraction, along with the RDT result for the turbulent intensity, 2k. Figure 
12 shows how p'2 and p'V-u' develop down the nozzle. Far upstream and far 
downstream the flow becomes uniform, so the rapid distortion pressure vanishes. As 
the pressure variance rises, the pressuredilatation correlation becomes negative ; 
farther downstream the pressure variance begins to fall and the pressure-dilatation 
crosses zero and becomes positive. This behaviour is analogous to that seen in 
turbulent flow through a shock wave: in that case the pressure-dilatation stores 
kinetic energy during the compression, then releases it after the shock. 

Appendix B. Equations of the turbulence model 
The turbulence closure model is presented here only for the case of one-dimensional 

compression. A general formulation is described in Zerman (1990, 1991), to which 
the present rapid pressuredilatation model has been added. Time, 7 ,  is non- 
dimensionalized by minus the initial rate of compression, - U ~ ,  so S,, = - 1/( 1-7). 
Turbulent intensities are normalized by the initial turbulent energy, k,, and the 
lengthscale is normalized by k t / a , .  It is convenient to introduce the new dependent 
variables : - _ _  

B = u:-Qk; Y = k + ( p i 2 + p k 2 ) / 2 p 2 ~ 2 ;  R = z / p 2 c 2 ,  (B 1) 

all of which are made non-dimensional by k,. Y is the sum of the kinetic energy and 
the potential energy of the pressure fluctuations. In  terms of these variables the 
model equations are 

B :  . B+'k 7-1 -n,,, Y = + +,- (Y-k) -a ,  B = [B+Bk_l.8461$,) - 4(B + :k) 
c . , A  \ 

- 
Y ( 1 - 7 )  -- 1-7  1-7  L 1 - 7  

Re-R 1-37 
R, -~ 

O . W ,  T 6( 1 - 7 )  

where T 2  = ( 2 k ) i L / ~ ,  Re = 21cM$/( 1 +M$) and Mg = 2k/c2.  The pressure-strain 
model is 

The constants 0.6 and 0.4 in the rapid terms are smaller than in Zeman (1990) : his 
values are 0.8 and 0.53. Their ratio was kept equal to i. The smaller values were 
needed to obtain the right level of anisotropy. It should be emphasized that the 
anisotropy is not sensitive to the pressure-dilatation model, while it is sensitive to 
the pressure-strain model. It is conceivable that the pressure-strain model requires 
modification for compressibility effects. The €-equation contains a term which 
Coleman & Mansour (1991) found necessary to account for the effect of variable 
viscosity, which is why the constants seem to differ from values for incompressible 
flow. In  the present computation of rapidly compressed turbulence dissipation is 
largely irrelevant. 

The rapid, solenoidal pressure variance model (40) reduces in the present case to 

ZZ,, = [3 .25/T+0.6 / (1-7) ]B+0.4E/(  1-7).  
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The RDT values C, = Q and C ,  = were used. Equation (B 3) along with the solution 
to (B 2 )  for Y and R determine k. The equation for Y was derived from (7) and the 
turbulent kinetic energy equation : 

P. A .  Durbin and 0. Zeman 

For this purpose, it should be noted that (7) divided by p can be rewritten 

when the mean flow is isentropic. 
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